3 Methods of Proof

17. Show that if n is an integer and 3n + 2 is an odd number, then n is an odd number.

18. Prove by contradiction that the number $\log_{\sqrt{2}} 3$ is irrational.

19. Show that if *n* is an even number, then $n^2 + 3n$ is even. Is the converse true?

20. Let *n* be an integer $(n \in \mathbb{Z})$. Prove that $n^2 \ge n$.

21. Let x and y be real numbers such that x < 2y. Prove the following implication:

If $7xy \leq 3x^2 + 2y^2$, then $3x \leq y$.

22. Show that if n is an odd integer and m is an even integer, then $n^2 + 3n + nm + 1$ is an odd number. Explain each step of your proof!

23. (exam, November 2021) Show that if 3nm + n + m is an even number, then both n and m are even numbers.

24. Consider the statement:

If x and y are odd integers, then their product xy is also an odd integer.

- (i) Provide a direct proof of the above implication.
- (ii) Provide a proof by contradiction of the above implication.

25. The reciprocal of a positive real number x is $\frac{1}{x}$. Consider the statement:

- If a real number x is positive, then the sum of x and its reciprocal is greater than or equal to 2.
- (i) Provide a direct proof of the above implication.
- (ii) Provide a proof by contradiction of the above implication.

All above math problems are taken from the following website: https://osebje.famnit.upr.si/~penjic/teaching.html. THE READER CAN FIND ALL SOLUTIONS TO THE GIVEN PROBLEMS ON THE SAME PAGE.